Home

Follow Countercurrents on Twitter 

Google+ 

Support Us

Popularise CC

Join News Letter

CounterSolutions

CounterImages

CounterVideos

Editor's Picks

Press Releases

Action Alert

Feed Burner

Read CC In Your
Own Language

Bradley Manning

India Burning

Mumbai Terror

Financial Crisis

Iraq

AfPak War

Peak Oil

Globalisation

Localism

Alternative Energy

Climate Change

US Imperialism

US Elections

Palestine

Latin America

Communalism

Gender/Feminism

Dalit

Humanrights

Economy

India-pakistan

Kashmir

Environment

Book Review

Gujarat Pogrom

Kandhamal Violence

WSF

Arts/Culture

India Elections

Archives

Links

Submission Policy

About Us

Disclaimer

Fair Use Notice

Contact Us

Search Our Archive

 



Our Site

Web

Subscribe To Our
News Letter

Name: E-mail:

 

Printer Friendly Version

Increased Ozone Harms Forests And Rivers

By Countercurrents.org

27 October, 2012
Countercurrents.org

Increased ozone harms forests, aggravates droughts situations. It reduces water supply to rivers.

Rising levels of ozone, a GHG, may amplify the impacts of higher temperatures and reduce streamflow from forests to rivers, streams, and other water bodies. Such effects could potentially reduce water supplies available to support forest ecosystems and people in the southeastern United States. This has been found by the US Forest Service and Oak Ridge National Laboratory (ORNL) scientists*.

Impacts of ozone, a global scale pollutant, on forests are not well understood at a large scale. This modeling study indicates that current and projected increases in ozone in the 21st century will likely enhance the negative effects of warming on watersheds, aggravating drought and altering streamflow.

Using data on atmospheric water supply and demand and statistical models, researchers with the Forest Service and ORNL were able to show what effects ozone can have on streamflow in dry seasons. Published in the November issue of the journal Global Change Biology, the study suggests that ozone has amplified the effects of warmer temperatures in reducing streamflow in forested watersheds in the southeastern US.

"From previous studies, we know a lot about ozone's influences on crops and leaves of young trees. However, no studies have investigated the impacts of ozone on water flow in large forested watersheds," says Ge Sun, research hydrologist with the Forest Service Eastern Forest Environmental Threat Assessment Center.

"Our studies show that ozone has a possible connection in the reduction of streamflow in late summer when flow is generally lowest, particularly in areas with high ozone levels such as the Appalachian Mountains in the Southeast."

Researchers developed models based on 18 to 26 years of data and observed streamflow in response to climate and atmospheric chemistry during the growing season. The research team evaluated individual and interactive effects of ozone on late season streamflow for six southeastern forested watersheds ranging in size from 38 acres to more than 3,700 square miles. Estimates of ozone's influence on streamflow ranged from 7 percent in the area of lowest ozone in West Virginia to 23 percent in the areas of highest exposure in Tennessee.

The findings from this study along with a wide range of previous field studies challenge assumptions derived from small controlled studies that ozone exposure reduces water loss from trees and forests. The present study of mature forests under moderate ozone exposure shows however those ecosystems may react in a different way than can be predicted by short-range, intensive studies.

"We're predicting that forests under high ozone conditions will use more water instead of less, as was previously assumed," says Samuel "Sandy" McLaughlin, scientist emeritus from the ORNL Environmental Sciences Division. "The concern is that ozone-induced increases in plant water loss could aggravate drought impacts on forests, and reduce the water available for people and stream life dependent on water flow during the dry seasons."

* ScienceDaily, “Ozone Affects Forest Watersheds”, Oct. 18, 2012, http://www.sciencedaily.com/releases/2012/10/121018123306.htm

Story Source:
The above story is reprinted from materials provided by USDA Forest Service Southern Research Station.

Journal Reference:

GE Sun, Samuel B. McLaughlin, John H. Porter, Johan Uddling, Patrick J. Mulholland, Mary B. Adams, Neil Pederson. Interactive influences of ozone and climate on streamflow of forested watersheds. Global Change Biology, 2012; 18 (11): 3395 DOI: 10.1111/j.1365-2486.2012.02787.x , USDA Forest Service Southern Research Station (2012, October 18)

 




 

 


Comments are moderated